Hypothesis testing

22 April 2009

Research Methods for Empirical Computer Science
CMPSCI 691DD
R.A. Fisher and ‘The lady tasting tea’
A value of a statistic is statistically significant if it (or a more extreme value) is unlikely to occur under H_0.

$$\alpha = p(\text{Reject } H_0 \mid H_0 \text{ True}) = p(\text{Type I Error})$$
Sampling distributions

Hypothetical Population (for which H_0 is true) → All Possible Samples → Derived Statistic Values → Sampling Distribution
Hypothesis testing strategy

• Formulate a null (and alternative) hypothesis
 • $H_0 : \mu_A = \mu_B$
 • $H_1 : \mu_A \neq \mu_B$

• Gather data

• Calculate a sample statistic (e.g., \bar{x})

• Estimate the sampling distribution for that statistic given H_0

• Use the sampling distribution to calculate $p(\bar{x}|H_0)$ (probability of obtaining \bar{x} given H_0)

• If the probability is low, reject H_0 in favor of H_1
How good was Fisher’s lady (Miss Bristol)?

\[
p(\text{outcome} \mid H_0) = \frac{\text{equivalent or more extreme outcomes}}{\text{outcomes}}
\]

<table>
<thead>
<tr>
<th>Cup</th>
<th>Actual</th>
<th>Guess2</th>
<th>3</th>
<th>…</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>…</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>…</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>++</td>
<td>–</td>
<td>…</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>…</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>…</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>…</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Requirements for permutation tests

• What is needed to apply this type of test?
 • Well-defined space of outcomes
 (e.g., permutations of guesses)
 • Probability distribution over those outcomes
 • Method for sampling from that space
 • Method for ranking outcomes (so each outcome is either equivalent, more, or less extreme than the experimentally obtained outcome)

• Do we need to generate all possible outcomes from the space?
 • No, it is enough to sample randomly, assuming we know the probability distribution
Parametric Tests
Example: Evaluating IR

• The online service Google evaluates performance of two search engines over 30-day periods.
• The new system achieves a mean per-day performance of 5603 (var=150)
• The old system achieves a mean per-day performance of 5476 (var=143)
• How can we test the null hypothesis that the mean per-day performance is drawn from the same distribution?
Difference between means

- Two-sample t-test
 - Assumptions
 - Population is normally distributed
 - Variance of two populations are equal
 - Samples are independent, random draws from the population

- Two-sample Z-test
 - Assumptions
 - N_1 and N_2 are sufficiently large
 - Samples are independent, random draws from the population
Paired t-test

- Boost the power of a two-sample test by controlling for variance

- Conventional two-sample t-test
 - Measure system A for 30 day period
 - Measure system B for **different** 30 day period
 - Use pooled variance \(\sigma_A^2 + \sigma_B^2 \)

- Paired t-test
 - Measure system A for 30 day period
 - Measure system B for **same** 30 day period
 - Use variance of differences \(\sigma_{A-B}^2 \)
Non-Parametric Tests
Non-parametric methods

- Compare relative locations of probability distributions rather than specific parameters of the populations
 - Many use **relative ranks** of sample observations rather than numerical values

- Weaknesses
 - Lower statistical power
 - Loss of precision (ranks vs. scores)
 - Not robust to all violations of assumptions
McNemar’s test

- Data consist of paired observations of labels
 - Test of difference in proportions is not applicable because samples are dependent

- Example:
 - Classification algorithms A and B applied to the same test set
 - Ignore CC and II cases
 - H_0: CI is as likely IC
 - Use binomial distribution

<table>
<thead>
<tr>
<th>Alg B</th>
<th>Correct</th>
<th>Incorrect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct</td>
<td>CC</td>
<td>CI</td>
</tr>
<tr>
<td>Incorrect</td>
<td>IC</td>
<td>II</td>
</tr>
</tbody>
</table>
Selecting hypothesis tests
Criteria to consider

- Sample information
 - One or two samples?
 - Paired or unpaired?
- Data type information
 - Discrete or continuous?
 - Parametric or non-parametric?
- Statistical power of test
- Robustness of test
“Cookbook” advice

<table>
<thead>
<tr>
<th></th>
<th>Continuous</th>
<th>Non-parametric</th>
<th>Discrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>One sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unpaired</td>
<td>t-test</td>
<td>Wilcoxon test</td>
<td>Chi-square or binomial test</td>
</tr>
<tr>
<td>Paired</td>
<td>Paired t-test</td>
<td>Wilcoxon test</td>
<td>McNemar’s test</td>
</tr>
<tr>
<td>Two samples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unpaired</td>
<td></td>
<td>Mann-Whitney test</td>
<td></td>
</tr>
<tr>
<td>Paired</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Use table for suggestions not rules

- Data type categorization may depend on...
 - Hypothesis being examined
 - External information about the data
- May be able to collect different data
 - One sample vs. two-sample
 - Paired vs. unpaired
- Check test assumptions
 - Use initial test of normality, equal variance, etc.
- Try low-power tests first, because often...
 - Easier to run
 - More robust
 - Require fewer assumptions

(Vellman and Wilkinson 1993)